Current status and future directions

Breeding plans

Lars Nielsen VikingGenetics

Nordic Implementation Workshop
Genomic Selection in Cattle
December 12th 2012
Park Inn, Copenhagen

Current breeding plan VG - 2012

< 10 best approved as elite bulls

All born calves in screening

Registration of daughters for 4 years = breeding values for the bulls

25-30/20-25/12-15 used as GenVikPLUS-bulls

175/200/55

approved as young bulls (1500-2000 doses)

1.800/2.000/500 selected based on NTM, and genomically tested

260/275/65

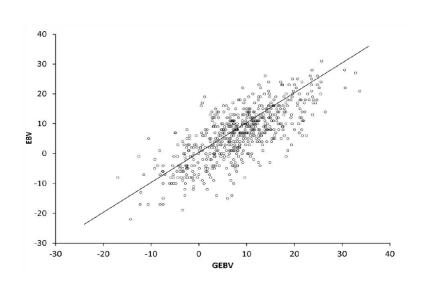
bought based on GAV-values

Effects of genomic selection on VG bulls

Sampled young bulls per year before and now

	Before GS	Now
Holstein incl. Red Hol	350	185
VikingRed	225	200
Jersey	55	55
Total	620	440

Waiting bull strategy


- Waiting bulls with low GEBVs on NTM and limited chance to be used as daughter proven bulls are being slaughtered
 - Decisions taken according to reliabilities in the breed
 - Within year and sire group
 - Risk acording to lower production costs
 - 500-1000 doses kept as safety stock

GenVikPLUS bulls have convinced

- We see good correlation between EBV and GEBV GenVikPLUS
 - Looking forward to including genomic and daughter information in same index to decrease the larger gap when information changes
- Most new top proven bulls have been used as GenVikPLUS

Use of bulls by category in VikingGenetics - fall 2012

Percent	Before GS	VR	HOL	JER
Daughter proven	70	48	24	51
GenVikPLUS	0	20	43	15
Young bulls	30	28	26	22
X-Vik	-	2,6	5	11
Import	-	1,3	2	1

But it is still important to convince farmers to use GVP bulls in batches.

Improved selection of import bulls on Nordic scale.

What have we changed?

- Genetic progress per year = (i x ria x dev)/L
- We have improved genetic progress mainly by lowering generational interval
 - GVP bulls as sires of sons
 - Mainly heifers and young cows as bull dams
- By genomic test of almost 4,500 bull calf candidates we have also increased selection intensity
- Decisions related to numbers of candidates and culling strategy taken in close cooperation with partners from University

Optimizing of breeding plans

- Continuos improvements of breeding schemes
 - Close cooperation with universities, scientists & evaluation center
 - Best methods available
 - Fast implementation of new methods
 - Tough competition on quality and price

Further developments

- Utilization of large scale typings by LD chips
 - Females in reference groups
 - Can affect our number of sampled YB per year
- Focus on new traits via genomic information
 - Feed efficiency
 - Emmision
 - Hoof health

- Improved repro technologies
 - Benefits with ET/ OPU (Jarmo Juga)

Further developments

- Increased use of EVA program
 - Inbreeding based on SNP info (Kenneth Byskov)
- How do we handle the small breeds
 - Reliability struggles (Jørn Rind Thomasen)
 - Inbreeding
- So far VG has kept the "normal" test of young bulls
 - To keep a random test
 - To test semen quality before intensive marketing
- All corners of breeding plan need to be top tuned

Thanks

